The vertex PI index and Szeged index of bridge graphs
نویسندگان
چکیده
منابع مشابه
The vertex PI index and Szeged index of bridge graphs
Recently the vertex Padmakar–Ivan (PI v) index of a graph G was introduced as the sum over all edges e = uv of G of the number of vertices which are not equidistant to the vertices u and v. In this paper the vertex PI index and Szeged index of bridge graphs are determined. Using these formulas, the vertex PI indices and Szeged indices of several graphs are computed.
متن کاملComputing Vertex PI Index of Tetrathiafulvalene Dendrimers
General formulas are obtained for the vertex Padmakar-Ivan index (PIv) of tetrathiafulvalene (TTF) dendrimer, whereby TTF units we are employed as branching centers. The PIv index is a Wiener-Szeged-like index developed very recently. This topological index is defined as the summation of all sums of nu(e) and nv(e), over all edges of connected graph G.
متن کاملComputing Szeged index of graphs on triples
ABSTRACT Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The Szeged index of G is defined by where respectively is the number of vertices of G closer to u (respectively v) than v (respectively u). If S is a set of size let V be the set of all subsets of S of size 3. Then we define t...
متن کاملVertex-PI Index of Some Nanotubes
The vertex version of PI index is a molecular structure descriptor which is similar to vertex version of Szeged index. In this paper, we compute the vertex-PI index of TUC4C8(S), TUC4C8(R) and HAC5C7[r, p].
متن کاملWeighted Szeged Index of Graphs
The weighted Szeged index of a connected graph G is defined as Szw(G) = ∑ e=uv∈E(G) ( dG(u) + dG(v) ) nu (e)n G v (e), where n G u (e) is the number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. In this paper, we have obtained the weighted Szeged index Szw(G) of the splice graph S(G1, G2, y, z) and link graph L(G1, G2, y, z).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2009
ISSN: 0166-218X
DOI: 10.1016/j.dam.2008.09.008